Chapter 10: Moments of Inertia

Recap from last chapter: First moment of an area (centroid of an area)

- The first moment of the area A with respect to the x -axis is given by $Q_{x}=\int_{A} y d A$
- The first moment of the area A with respect to the y-axis is given by

$$
Q_{y}=\int_{A} x d A
$$

- The centroid of the area A is defined as the point C of coordinates \bar{x} and \bar{y}, which satisfies the relation

$$
\begin{aligned}
& \int_{A} x d A=A \bar{x} \\
& \int_{A} y d A=A \bar{y}
\end{aligned}
$$

- In the case of a composite area, we divide the area A into parts $A_{1}, A_{2}, A_{3}=$

$$
A_{\text {total }} \bar{X}=\sum_{i} A_{i} \bar{x}_{i} \quad A_{\text {total }} \bar{Y}=\sum_{i} A_{i} \bar{y}_{i}
$$

Brief tangent about terminology: the term moment as we will use in this chapter refers to different "measures" of an area or volume.

- The first moment (a single power of position) gave us the centroid.
- The second moment will allow us to describe the "width."
- An analogy that may help: in probability the first moment gives you the mean (the center of the distribution), and the second is the standard deviation (the width of the distribution).

Mass Moment of Inertia

Mass moment of inertia is the mass property of a rigid body that determines the torque T needed for a desired angular acceleration (α) about an axis of rotation (a larger mass moment of inertia around a given axis requires more torque to increase the rotation, or to stop the rotation, of a body about that axis).
Mass moment of inertia depends on the shape and density of the body and is different around different axes of rotation.

Torque-acceleration relation: $T=I \alpha$
where the mass moment of inertia is defined as $I_{Z Z}=\int \rho r^{2} d V$

Mass moment of inertia for a disk:

$$
\begin{aligned}
I_{z z} & =\int \rho r^{2} d v=\int_{0}^{t} \int_{0}^{2 \pi} \int_{0}^{R} \rho r^{2}(r d r d \theta d z) \\
& =\rho \int_{0}^{t} \int_{0}^{2 \pi} \frac{r^{4}}{4} d \theta d z \\
& =\rho \int_{0}^{t} \frac{r^{4}}{2} \pi d z=\rho \frac{r^{4}}{2} \pi t=\frac{r^{2}}{2} \rho \pi r^{2} t=\frac{r^{2}}{2} \rho V=\frac{r^{2}}{2} M
\end{aligned}
$$

Moment of Inertia (or second moment of an area)

Moment of inertia is the property of a deformable body that determines the moment needed to obtain a desired curvature about an axis. Moment of inertia depends on the shape of the body and may be different around different axes of rotation.

$$
\begin{aligned}
& \text { Moment-curvature relation: }\left|M_{x}\right|=\frac{E I_{x}}{\rho} \\
& \text { E: Elasticity modulus (characterizes stiffness of the deformable body) } \\
& \rho: \text { curvature }
\end{aligned}
$$

- The moment of inertia of the area A with respect to the x-axis is given by $I_{x}=\int_{A} y^{2} d A$
- The moment of inertia of the area A with respect to the y -axis is given by

$$
I_{y}=\int_{A} x^{2} d A
$$

- Polar moment of inertia

$$
J=\int_{A} r^{2} d A=\int_{A}\left(x^{2}+y^{2}\right) d A=I_{y}+I_{x}
$$

Moment of inertia of a rectangular area

$$
\begin{aligned}
I_{x} & =\int_{A} y^{2} d A & I_{y} & =\int_{A} x^{2} d A \\
& =\int_{-h / 2}^{h / 2} \int_{-b / 2}^{b / 2} y^{2} d x d y & & =\int_{-b / 2}^{b / 2} \int_{-h / 2}^{h / 2} x^{2} d y d x \\
& =\int_{-h / 2}^{h / 2} b y^{2} d y=\left.\frac{b y^{3}}{3}\right|_{-h / 2} ^{h / 2} & & =\int_{-b / 2}^{b / 2} h x^{2} d x=\left.\frac{h x^{3}}{3}\right|_{-b / 2} ^{b / 2} \\
& =\frac{b}{3}\left((h / 2)^{3}-(-h / 2)^{3}\right) & & =\frac{h}{3}\left((b / 2)^{3}-(-b / 2)^{3}\right) \\
& =\frac{b}{3}\left(\frac{2 h^{3}}{8}\right) & & \frac{h}{3}\left(\frac{2 b^{3}}{8}\right) \\
& =\frac{b h^{3}}{12} & & \frac{h b^{3}}{12}
\end{aligned}
$$

Polar moment of inertia of a circle
$J_{o}=\int r^{2} d A=\int_{0}^{2 \pi} \int_{0}^{R} r^{2}(r d r d \theta)$
$=\int_{0}^{2 \pi} \frac{R^{4}}{4} d \theta=\frac{\pi R^{4}}{2}$

Rectangle		$\begin{aligned} & \bar{I}_{x^{\prime}}=\frac{1}{12} b h^{3} \\ & \bar{I}_{y^{\prime}}=\frac{1}{12} b^{3} h \\ & I_{x}=\frac{1}{3} b h^{3} \\ & I_{y}=\frac{1}{3} b^{3} h \\ & J_{C}=\frac{1}{12} b h\left(b^{2}+h^{2}\right) \end{aligned}$
Triangle		$\begin{aligned} \bar{I}_{x^{\prime}} & =\frac{1}{38} b h^{3} \\ I_{x} & =\frac{1}{12} b h^{3} \end{aligned}$
Circle		$\begin{aligned} & \bar{I}_{x}=\bar{I}_{y}=\frac{1}{4} \pi r^{4} \\ & J_{O}=\frac{1}{2} \pi r^{4} \end{aligned}$
Semicircle		$\begin{aligned} & I_{x}=I_{y}=\frac{1}{8} \pi r^{4} \\ & J_{O}=\frac{1}{4} \pi r^{4} \end{aligned}$
Quarter circle		$\begin{aligned} & I_{x}=I_{y}=\frac{1}{16} \pi r^{4} \\ & J_{O}=\frac{1}{8} \pi r^{4} \end{aligned}$
Ellipse		$\begin{aligned} & \bar{I}_{x}=\frac{1}{4} \pi a b^{3} \\ & \bar{I}_{y}=\frac{1}{4} \pi a^{3} b \\ & J_{O}=\frac{1}{4} \pi a b\left(a^{2}+b^{2}\right) \end{aligned}$

Parallel axis theorem

- Often, the moment of inertia of an area is known for an axis passing through the centroid; e.g., x ' and y ':
- The moments around other axes can be computed from the known $I_{x^{\prime}}$ and $I_{y^{\prime}}$:

$$
\begin{aligned}
I_{x}= & \int_{\text {area }}\left(y^{\prime}+d_{y}\right)^{2} d A \\
= & \int_{\text {area }}\left(y^{\prime}\right)^{2} d A+2 d_{y} \int_{\text {area }} y^{\prime} d A \\
& +d_{y}^{2} \int_{\text {area }} d A \\
= & I_{x^{\prime}}+A d_{y}^{2} \\
I_{y}= & I_{y^{\prime}}+A d_{x}^{2} \\
J_{O}= & J_{C}+A\left(d_{x}^{2}+d_{y}^{2}\right)=J_{C}+A d^{2}
\end{aligned}
$$

Note: the integral over y , gives zero when done through the centroid axis.

Moment of inertia of composite

- If individual bodies making up a composite body have individual areas A and moments of inertia I computed through their centroids, then the composite area and moment of inertia is a sum of the individual component contributions.
- This requires the parallel axis theorem
- Remember:
- The position of the centroid of each component must be defined with respect to the same origin.
- It is allowed to consider negative areas in these expressions. Negative areas correspond to holes/missing area. This is the one occasion to have negative moment of inertia.

From last chapter: Centroid position of the area below is given by

$$
\begin{aligned}
& A_{\text {total }} \bar{Y}=\sum_{i} A_{i} \bar{y}_{i} \\
& \bar{Y}=\frac{4 t^{2}(3.5 t)+6 t^{2}(1.5 t)}{4 t^{2}+6 t^{2}}=\frac{23 t}{10}
\end{aligned}
$$

Find the moment of inertia:

Determine the moment of inertia for the cross-sectional area about the x and y centroidal axes.

Two channels are welded to a rolled W section as shown. Determine the moments of inertia of the combined section with respect to the centroidal x and y axes.

